Comments by Rafael Repullo on

Government Guarantees and Financial Stability

F. Allen, E. Carletti, I. Goldstein and A. Leonello

Conference on the Financial Stability and Regulation IESE Business School, Barcelona, 27 March 2014

Purpose of paper

- Analyze effect of government guarantees on bank deposits
- What is the trade-off?
 - \rightarrow Guarantees may prevent panics
 - \rightarrow Guarantees may lead to excessive risk-taking
- Question
 - \rightarrow Do they stabilize or increase fragility of financial system?

Setup

- Starting point: Diamond and Dybvig (1983)
 - \rightarrow Multiple equilibria
 - \rightarrow Possibility of (inefficient) bank runs
- Reference model: Goldstein and Pauzner (2005)
 - → Unique equilibria (global games approach)
 - \rightarrow Panic-based and fundamental-based runs
- Introduce a government in Goldstein and Pauzner (2005)

Main results

- Introduction of government guarantees
 - \rightarrow Reduces depositors' incentives to run
 - \rightarrow Induces banks to take more risk
 - \rightarrow Overall effect is ambiguous
- Eliminating runs is not desirable
 - \rightarrow Guarantee has to be set at an inefficiently high level
- Effectiveness of guarantees depends on their credibility
 - \rightarrow If not credible they unambiguously increase fragility

Main comment

• Formal analysis is very complicated

 \rightarrow It is difficult to see what is driving the results

• In the words of the authors

"Due to the complexity of the model, we cannot provide a full characterization and we have to focus on a particular scheme, but our analysis sheds light on basic trade-offs and decisions."

What am I going to do?

- Consider a simplified version of the model
 - \rightarrow Focusing on fundamental runs: θ is observable at t = 1
 - \rightarrow Dispensing of the global games apparatus
 - \rightarrow Hoping that the intuition will carry over to general case

This discussion

• Compute a simple numerical example

 \rightarrow Probability of high return at t = 2 is $p(\theta) = \theta \sim U(0,1)$

 \rightarrow Proportion of early consumers is $\lambda = 1/2$

→ Utility function is
$$u(c) = \begin{cases} c, & \text{if } c \le 1\\ 2 - \frac{1}{c}, & \text{otherwise} \end{cases}$$

 \rightarrow This function satisfies u(0) = 0 and RRA(c) = 2 for c > 1

 \rightarrow Utility of public good replaced by social cost of taxation

Model without guarantees

• Investment returns

$$1 \xrightarrow{\qquad} \tilde{R} = \begin{cases} R, \text{ with probability } \theta \\ 0, \text{ with probability } 1 - \theta \\ 1 \end{cases}$$

where
$$E(\tilde{R}) = \frac{R}{2} > 1$$

Optimal contract (i)

• Bank offers a contract with promised payments

$$c_1$$
 and $c_2 = \begin{cases} \frac{(1 - \lambda c_1)R}{1 - \lambda} = (2 - c_1)R, \text{ with prob. } \theta \\ 0, & \text{with prob. } 1 - \theta \end{cases}$

Optimal contract (ii)

$$\max_{(c_1,c_2,\hat{\theta})} \hat{\theta} u(1) + (1-\hat{\theta}) \Big[\lambda u(c_1) + (1-\lambda) E(\theta \,\Big| \, \theta \ge \hat{\theta}) u(c_2) \Big]$$

subject to $u(c_1) = \hat{\theta} u(c_2)$

• Fundamental runs: when late depositors observe a state $\theta < \hat{\theta}$

 \rightarrow Payoff if they run: $u(c_1)$

 \rightarrow Expected payoff if they do not run:

$$\theta u(c_2) < \hat{\theta} u(c_2) = u(c_1)$$

 \rightarrow All depositors withdraw at t = 1 and bank is liquidated

Numerical results

• Optimal contract for R = 4

$$\hat{c}_1 = 1.15, \ \hat{c}_2 = 3.38, \ \hat{\theta} = 0.67$$

• How do we know whether there is too much liquidation?

 \rightarrow We need a benchmark

- What would be an appropriate benchmark?
 - \rightarrow Suppose that consumer types were observable
 - \rightarrow In this case late consumers could not claim to be early

Optimal contract with observable types

$$\max_{(c_1,c_2,\theta^*)} \theta^* u(1) + (1-\theta^*) \Big[\lambda u(c_1) + (1-\lambda) E(\theta | \theta \ge \theta^*) u(c_2) \Big]$$

• Optimal contract for R = 4

$$c_1^* = 1.40, \ c_2^* = 2.39, \ \theta^* = 0.45$$

• Since

$$\theta^* = 0.45 < 0.67 = \hat{\theta}$$

 \rightarrow There is indeed too much liquidation in original model

- \rightarrow But some liquidation is optimal
- \rightarrow Eliminating runs makes no sense

What happens with government guarantees?

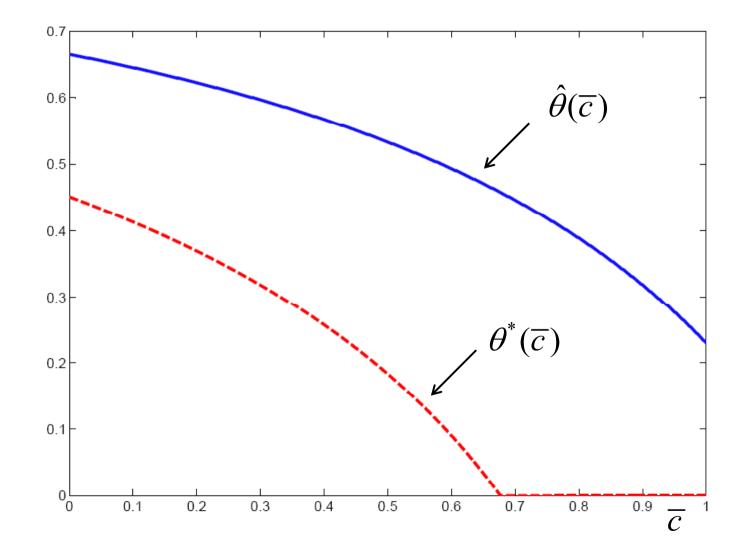
• Bank offers a contract with promised payments

$$c_1$$
 and $c_2 = \begin{cases} \frac{(1 - \lambda c_1)R}{1 - \lambda} = (2 - c_1)R, \text{ with prob. } \theta \\ \overline{c}, & \text{with prob. } 1 - \theta \end{cases}$

where \overline{c} is paid by the government

Optimal contract with guarantees

$$\max_{(c_1,c_2,\hat{\theta})} \hat{\theta} u(1) + (1-\hat{\theta}) \Big[\lambda u(c_1) + (1-\lambda)E(\theta | \theta \ge \hat{\theta})u(c_2) \\ + (1-\lambda)E(1-\theta | \theta \ge \hat{\theta})u(\overline{c}) \Big] \\ \uparrow_{\text{new term}}$$


subject to
$$u(c_1) = \hat{\theta}u(c_2) + (1 - \hat{\theta})u(\overline{c})$$

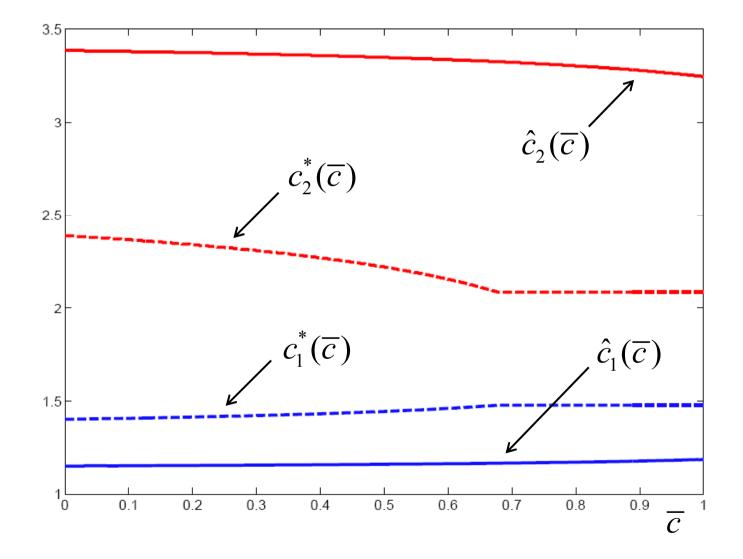
$$\uparrow_{\text{new term}}$$

Numerical results

- Compute $\hat{\theta}$ and θ^* for $\overline{c} \in [0,1]$ (and R = 4)
- Will guarantees correct excessive liquidation?

Liquidation thresholds

What is going on?


• Government guarantees also affect benchmark contract

 \rightarrow They introduce new insurance possibilities

 \rightarrow Continuation is optimal for lower values of the state θ

• In fact, for high values \overline{c} of you never want to liquidate!

Optimal contracts

Discussion

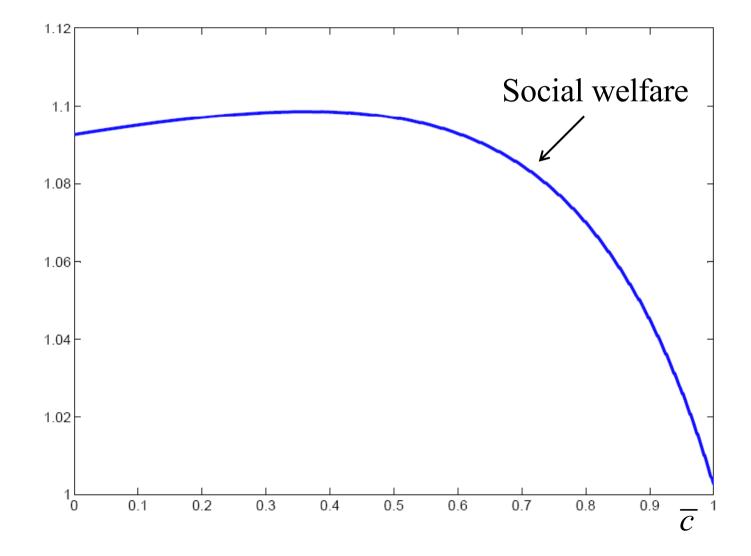
- In what sense can this be optimal?
 - \rightarrow Only if you ignore cost of the taxes required for insurance
 - \rightarrow What happens if you introduce social cost of taxation?

Introducing social cost of taxation

• Suppose that cost of paying $x = (1 - \lambda)\overline{c}$ to the late consumers is

$$s(x) = x + x^2$$

 \rightarrow Toulouse lambda = s'(x) = 1 + 2x


• This is paid with probability

$$\int_{\hat{\theta}}^{1} (1-\theta) \, d\theta = \frac{(1-\hat{\theta})^2}{2}$$

• Once this is taken into account

 \rightarrow What is the optimal government guarantee?

Optimal government guarantee

Summing up

• Introducing guarantees increases social welfare

 \rightarrow Even when social cost of taxation is taken into account

- Effect on financial stability
 - \rightarrow Increase payment to early consumers leads to higher $\hat{\theta}$
 - \rightarrow Increase payment in low return state leads to lower $\hat{\theta}$
 - \rightarrow Overall effect is to reduce liquidation threshold $\hat{\theta}$
 - \rightarrow More stable financial system

Questions

- Do these results hold outside the simple numerical example?
- Do these results hold when we consider panic-based runs?
- Should we consider other policy instruments?
 - \rightarrow Complementing or even replacing deposit insurance

Other comments on the model

• Do we need such peculiar utility function?

 \rightarrow Driven by requirements u(0) = 0 and RRA(c) > 1

- \rightarrow Why not simply assume that failure return is positive?
- Liquidation value at t = 1 is peculiar
 - \rightarrow Not related to expected continuation value
 - \rightarrow Model of firm with real assets that could be redeployed
 - \rightarrow Not really a model of firm with financial assets

Final comment

• Paper shares common (negative) view of deposit insurance

 \rightarrow Starting with literature review...

• Does deposit insurance <u>always</u> lead to more risk-taking?

 \rightarrow It depends on the model

- Deposit insurance reduces banks' funding costs
 - \rightarrow Higher charter values and lower incentives for risk-taking
 - \rightarrow See Repullo (2005)